



# **Wide-Field Calorimeter Concept**

 $Enectali\ Figueroa-Feliciano\ (GSFC)$ 

Kent Irwin (NIST)



#### What can we do to increase the field of view of the XMS?

- One of the limitations on the size of the XMS array is the number of electronic readout channels (SQUIDs)
- Energy resolution and throughput requirements place constraints on maximum number of SQUID channels
- Our strategy is to maintain the current baseline design while proposing an additional array that will be optimized for field of view.
- To increase the number of pixels, we look at technology extensions which may enable more SQUID channels for the same requirements.
- A further increase is obtained by relaxing the throughput and energy resolution requirements.
- Further increase in FOV could be obtained by using Position-Sensitive Devices.



## XMS-centric view of Optical Bench vs. Formation Flying

| Issues                  | Optical Bench                                                                  | Formation Flying                                                                                                                    |
|-------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Count Rate              | Limited by time constants -> affects FOV. 4 telescopes better than 1 telescope | Defocusing would greatly increase achievable count rate, and would offset the increase in count rate associated with 1 telescope.   |
| Plate Scale             | 10-25 m Focal Length Ideal for 5" pixels                                       | For 50 m Focal length, 5"pixels are harder, and may impact Energy Resolution. Physical size of array may limit FOV. 2.5" pixels are |
| Multiple<br>Instruments | Would require mechanical translation stage                                     | better.<br>Easy with Formation Flying                                                                                               |
| Servicability           | 1 detector suite for the entire mission.                                       | Can possibly upgrade detectors, add capability, etc.                                                                                |

#### High-Resolution events as a function of count rate





### High-Resolution events as a function of count rate





### High-Resolution events as a function of count rate



### XMS-W: A High-Energy-Resolution Wide-Field Camera Concept



#### **Baseline**

32x32 1 kilopixel 2.5 arcmin Narrow-Field High-Throughput High-Resolution Imager 100 µsec decay time 2-4 eV FWHM

128x128 16 kilopixel 10 arcmin Wide-Field Camera 500-1000 μsec decay time 4 eV FWHM

256x256 65 kilo-pixel 20 arcmin Wide-Field Camera Using Position-Sensitive Detectors 500-1000 μsec decay time Four times lower maximum countrate than 10 arcmin camera 5-8 eV FWHM

Soft X-ray Imager TBD - 1 keV 0.5 eV FWHM @ 500 eV 100 μsec decay time

Assumes 5" pixels

**Abell 2029** 

#### **Multiplexing very large TES arrays**

- Assuming 100 MHz open-loop bandwidth and fast room-temperature timedivision electronics.
- Optimistic scaling from present circuits.
- Preliminary models more detailed full system Monte Carlo models in process

#### The number of pixels MUXed per column vs. $\tau$ and energy resolution





A 128×128 array would potentially require a total of 8 HEMT amplifiers, 128 address lines, and 128 1<sup>st</sup>-stage SQUID feedback lines